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Abstract

Traditional mathematical tools used for analysis of fractals allow us
to distinguish results of self-similarity processes after a finite number of
iterations. Fractal dimension has often been applied as a parameter of
complexity, related to surface roughness, or for classifyving textures or line
patterns. Fractal dimension can be estimated statistically, if the pattern is
known to be self-similar. Our goal is to provide basic concepts of
topological and fractal dimension, to give some examples of common fractal
objects and compute their fractal dimension.
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Introduction

During last decades fractals have been intensively studied and
applied in various fields. Their mathematical analysis very often continues to
have mainly a qualitative character and there are not so many tools for a
quantitative analysis of their behavior after executing infinitely many steps
of a self-similarity process of construction.

Fractals are the place where Mathematics, Science and Art come
together. Fractal geometry is becoming increasingly more important in the
study of image characteristics. There are many mathematical structures that
are fractals; e.g. Sierpinski triangle, Koch snowflake, Mandelbrot set, etc.
Fractals also describe many real-world objects, such as clouds, mountains
and coast lines that do not correspond to simple geometric shapes. In 1975,
B. B. Mandelbrot introduced the term fracral (from the Latin fractus,
meaning broken) to characterize spatial or temporal phenomena that are
continuous but not differentiable). Fractal objects and processes are said to
display “self-similar” (or self-affine) properties (Hastings, 1993) i.e., small
subsets of the object resemble (statistically) the whole. Fractal properties
include scale independence, self-similarity, complexity, and infinite length
or detail. A mathematical fractal is defined as any series for which the
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Hausdorff dimension (a continuous function) exceeds the discrete
topological dimension (Tsonis, 1987).

From the mathematical point of view, Becker (1983) classified
fractals into three major categories. The first, iterated function system (like
Koch Snowflake) can generate a fractal from any set of vectors or any
defined curve. The second is the complex number fractals, which can be
two-dimensional, three dimensional or multiple-dimensional (the
Mandelbrot set and Julia set). The third is orbit fractals, which are
generated by plotting an orbit path in two or three-dimensional space (the
Bifurcation orbit. Lorenz Attractors).

In order to provide a basis for the applications of fractals to
experimental results. this paper focuses on the fractal dimension.

Experimental

Methods to measure fractal dimension

A fractal object has two basic characteristics: infinite detail at every
point and a certain self-similarity between the object parts and the overall
features of the object.

The self-similarity properties of an object can take different forms,
depending on the representation we choose for the fractal. In mathematics. a
class of complex geometric shapes that commonly exhibit the property of
sclf-similarity, such that a small portion of it can be viewed as a reduced
scale replica of the whole.

Because of the infinite detail inherent in the construction procedures,
a fractal object has no definite size. When the detail in an object description
is included more. the dimensions increase without limit, but the coordinate
extents for the object remain bound within a finite region of space.

We can use the notion "dimension" in two senses: the three
dimensions of Euclidean space (D € {1, 2, 3}) and the number of variables
in a dynamic system. Fractals. which are irregular geometric objects, require
a third meaning: the Hausdorff Dimension.

In physical systems, the fractal dimension retlects some properties of
the system. The physical characteristics of some bodies are related to the
fractal dimension of their surfaces.

For example. the growth pattern of bacteria has a fractal dimension of
1.7. and the fractal dimension of clouds is 1.30 to 1.33; for snowflakes it is
1.7. for coastlines in South Africa or Britain, 1.05 to 1.25, and for woody
plants and trees, 1.28 to 1.90 (Taylor, 2002).
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Biologists have traditionally modeled nature using Euclidean
representations of natural objects or series. Examples include the
representation of conifer trees as cones, cell membranes as curves or simple
surfaces, etc. Biological systems and processes are typically characterized by
many levels of substructure, with the same general pattern repeated in an
ever-decreasing cascade.

In medicine, fractal dimensions have been found for various
biomolecules such as DNA and proteins. Self-similarity has been found also
in DNA sequences. In the opinion of some biologists fractal properties of
DNA can be used to resolve evolutionary relationships in animals.

Scientists discovered that the basic architecture of a chromosome is
tree-like; every chromosome consists of many “mini-chromosomes” and
therefore, can be treated as fractal. For a human chromosome, for example, a
fractal dimension D equals 2.34 (between the plane and the space
dimension).

The fractal dimension of lysozyme (egg-white) is 1.614; for
hemoglobin it is 1.583, and for myoglobin 1.728 (Iannaccone, 1996). The
fractal dimension of the perimeter of surface cell sections has been used to
distinguish healthy cells from cancerous cells (Bauer. 1999).

In analytical chemistry, the fractal dimension is used as a tool to
characterize chemical patterns and problems of sample homogeneity
(Danzer, 2000).

Topological dimension is always a nonnegative integer. To obtain a
finer measurement of the complexity of a space, it is essential to have a way
to “measure” things. Therefore, we will assume that our space X is a metric
space with a distance function d. Thus, we cross the boundary from topology
to geometry.

We start with simple geometric figures that we know how to
measure. The length of the line segment form (xi.y;) to (xa,y2) is

\/(x,—xz)z+(y,—y3)z according to Pythagoras' formula. Then, the

approximate length of the curve is the sum of the lengths of the line
segments. If the same limiting value L of the sum of the lengths of the line
segments always occurs, we say the curve is rectifiable and that the length of
the curve is L. For areas, we use the same sort of reasoning approximating
the region by a union of small rectangles.

This generalized treatment of dimension is named after the German
mathematician, Felix Hausdorff. Historically, Hausdorff (1919) introduced
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the term of noninteger dimension and with the given definition the age of
fractality has begun.

The amount of variation in the structure of a fractal object can be
described with a number D, called the fractal dimension, which is a measure
of the roughness or fragmentation of the object. There are some methods to
generate a fractal objects. As one method of them, there is an iterative
procedure that uses a selected value for D. '

A set that can be assigned a fractal dimension is called a fractal set.
One can determine the fractal dimension of the set by observing optimal
covering systems of fractal sets with decreasing diameters. It should be
mentioned that several different definitions of fractal dimension were created
since Hausdorff's paper.

For self similar sets most of these definitions lead to the same
dimension number (Sandau, 1996).

If a set is given in a binary image, one can always measure its fractal
dimension. Several methods use a regression along the range of possible
magnifications in the image (Falconer, 1994). An often-used method of this
type is the so called box-counting method (denoted by bcm). In bem, the
number of boxes of a regular grid with boxes of side length L, intersecting
the set of interest, are counted.

The logarithm of this number is plotted versus log(L) in a so-called
"log-log-plot". In case of self-similar sets the graph has globally a constant
slope which is directly related to the fractal dimension. To calculate the box-
counting dimension, we need to place a picture on a grid. The x-axis of the
grid is s where s=1/(width of the grid). For example, if the grid is 240 blocks
tall by 120 blocks wide, s=1/120. Then, count the number of blocks that the
picture touches. Label this number N(s).

Now, resize the grid and repeat the process. Plot the values found on
a graph where the x-axis is the log(s) and the y-axis is the log(N(s)). Draw in
the line of best fit and find the slope. The box-counting dimension measure
is equal to the slope of that line. The Box-counting dimension is much more
widely used than the self-similarity dimension since the box-counting
dimension can measure pictures that are not self-similar (and most real-life
applications are not self-similar).

One can be assumed that for any fractal object (of size P, made up of
smaller units of size p). the number of units (N) that fits into the larger object
is equal to the size ratio (P/p) raised to the power of D. Thus, if we take an
object of dimension D and reduce its linear size by P/p in each spatial
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direction, its measure (length, area, or volume) would increase to N=(P/p)D
times the original, thus log(N) = D log(P/p). If we solve for D we obtain
_ _log(N)
log(P/ p)
We remark that D is not necessarily an integer. as it is in Euclidean
geometry.

Results and Discussion
Examples of geometric objects with non-integer dimensions

1. Cantor’s set dimension
We consider a line segment of unit length and we remove its middle
third. Then, we remove the middle thirds from the remaining two segments.
We could continue this construction through infinitely many steps. What
remains after infinitely many steps is a remarkable subset of the real
numbers called, the Cantor set.

Step )
Step 1

Swep 2

-—— —_—— - - = Stepd

- - ee m ce == Dicpd

Fig.1: Cantor’s set

After that, all the lengths of the intervals we removed add up to 1,
exactly the length of the segment we started with:

1 2 4 2" 1&(2Y
-t =t —+..+ +..==) |=| =1
3 9 27 3l|+I 32(3)

n=0

Fractal dimension of Cantor Set: at each step, one line segment is
divided into 2 self-similar pieces with scaling factor 1/3, hence fractal
log2

dimension of Cantor setis D =— =0,
log(1/3)
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2. Fractal dimension of Koch snowflake curve

We begin with a straight line and we divide it into three equal
segments and replace the middle segment by the two sides of an equilateral
triangle of the same length as the segment being removed. The first iteration
for the Koch curve consists of taking four copies of the original line
segment. each scaled by r = 1/3. Two segments must be rotated by 60°, one
counterclockwise and one clockwise. Now we repeat, taking each of the four
resulting segments, dividing them into three equal parts and replacing each
of the middle segments by two sides of an equilateral triangle (the red
segments in the bottom figure).

The Koch curve is the limiting curve obtained by applying this
construction an infinite number of times. The "limit curve" defined by
repeating this process an infinite number of times is called the Koch's
snowflake curve, named after Niels Fabian Helge von Koch (Sweden, 1870-
1924). Koch constructed his curve in 1904 as an example of a non-
differentiable curve

The length of the intermediate curve at the n™ iteration of the
construction is (4/3)", where n = 0 denotes the original straight line segment.
Therefore, the length of the Koch curve is infinite and the length of the curve
between any two points on the curve is also infinite since there is a copy of
the Koch curve between any two points.

For a proof that this construction does produce a "limit" that is an
actual curve, i.e. the continuous image of the unit interval (Edgar, 1990).
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Using only line segments that are 3 centimeters long (P), we make a
simple Koch's Curve: 1 segment of 3 centimeters per segment. If you take
that to the next level and use line segments which are | centimeter long (p),
you use 4 line segments of 1 cm, then 12 segments. etc.

By cutting the length of the line segments by one third (P =3.p=1,
P/p = 3), the number of line segments used (N) goes up four times. That
means N = 4, P/p = 3, so fractal dimension of Koch's snowflake curve is D
=In4/In3=1.26....

3. Fractal dimension of Sierpinsky triangle

Like other fractal objects, Sierpinsky triangle can be obtained through
an algorithm. ’

The algorithm is as follows: Start with any triangle in a plane. An
equilateral triangle with a base parallel to the horizontal axis is used most
commonly for this purpose.

Scale the triangle by half. take three such triangles. and position them
so that each triangle touches the two other triangles at a corner. Repeat this
step with each of the smaller triangles.

Fig. 3: Sierpinsky Triangle

On every iteration, we replace each triangle with three similar
triangles using scaling factor = 1/2. Hence the fractal dimension D can be

calculated as D =% =1.58...

n
Conclusion

Fractal geometry permits generalization of the fundamental concepts
of dimension and length measurement.

It is important to recognize that while Euclidean geometry is not
realized in nature, neither is strict mathematical fractal geometry.

Fractal Dimension allows us to measure the degree of complexity by
evaluating how fast our measurements increase or decrease as our scale
becomes larger or smaller.
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In applications to natural science, one usually takes the point of view
that the fractals that occur in nature are well-behaved with respect to the
calculation of their dimension.

References

W. Bauer, C. D. Mackenzie, (1999), Cancer Detection via Determination of Fractal Cell
Dimension, Workshop on Computational and Theoretical Biology, Michigan State
University; see hip:// www.pa.msu.edu/_/bauer/cancer/cancer.pdy.

Becker K.H., Dorfler M. (1983), Dynamical Systems and Fractals, Cambridge University
Press, United Kingdom.

K. Danzer, J. F. van Staden, and D. T. Burns, “Concepts and Applications of the Term
‘Dimensionality” in Analytical Chemistry,” Pure Appl. Chem. 74, No. 8, 1479-1487 (2002).
Edgar G.A., (1990), Measure, Topology, and Fractal Geometry, Sringer-Verlag.

Falconer, K. J. (1990). Fractal geometry. Mathematical Foundations and Applications.
Wiley & Sons, Chichester

Hastings, H.M. and G. Sugihara.1993. Fractals: a user's guide for the natural sciences,
Oxford University Press, Oxford, England.

Hausdorff, F. (1919): Dimension und 4uBeres MaB. Math. Ann. 79, 157-179.

Longley, P.A. and M. Batty. 1989.0n the fractal measurement of geographical boundaries.
Geogr. Anal. 21:47-67.

P. M. lannaccone and M. Khokha, Eds., Fractal Geometry in Biological Systems: An
Analytical Approach, CRC Press, Boca Raton, FL, 1996.

Mandelbrot, B.B. 1975. Stochastic models for the Earth's relief, the shape and the fractal
dimension of the coastlines. and the number-area rule for islands. Proc. Nat. Acad.
Sci.U.S.A. 72: 3825-3828.

Sandau, K.(1996): A note on fractal sets and the box counting method. Physica A, 233: 1-
18.

Sandau, K., Kurz, H., (1997): Measuring fractal dimension and complexity - an alternative
approach with an application, Journal of Microscopy, 186, 164-176.

T. Tel, A. Fulop, T. Vicsek (1989), Determination of Fractal Dimension for Geometrical
Multifractals, Physica 4, 159, 155-166

R.P.Taylor, B.Spehar, C.W. Clifford, B. R. Newell (2002), The Visual Complexity of
Pollock’s Dripped Fractals, Proceedings of the International Conference of Complex
Systems; see http://materialscience.uoregon.edw/tavior/art/Taylor | CCS2002.pdf.



