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Rezumat:

Una dintre problemele fundamentale ale teoriei subvarietétilor este stabilirea unor relatii intre invariantii intrinseci
si extrinseci ai subvarietitilor. Scopul principal al acestui articol este de a prezenta citeva aplicatii referitoare la egalitéti si
inegalitati, folosind acesti invarianti ai unor subvarietati arbitrare in varietéti Riemanniene.

Abstract:

One of the most fundamental problems in submanifold theory is to establish simple relationships between intrinsic
and extrinsic invariants of the submanifolds. The main purpose of this article is to present several applications of equalities
and inequalities for arbitrary submanifolds in Riemannian manifolds involving these invariants.

Résumé:

L’un des problemes fondamentaux de la théorie des subvariétes est d’établir des relations entre des invariants
intrinséque et extrinseque sur les variétés. Le but principal de cet article est de présenter plusieurs applications et des
égalités et inégalit€s pour les subvariétes arbitraires in variétés Riemannien, réalisés avec ces invariants.

Abstrakt :

Ein bedeutenstes Thema in der Theorie der Untervarietiten ist die Festsetzung einiger einfacher Relationen
zwischen der eigentlichen der Untervarietiten. Das Hruftthema dieses Artikels ist das Vorbringen einiger Verwendungen
und Egalitaten, und Inegalitaten der Riemannienen Untervarietiten, die mit Hilfe dieser Urbilder der Untervarietiten
realisiert worden sind.

Introduction

The theory of submanifolds was started with curvature of plane curves. For a surface in
Euclidian 3-space one has the two important quantities (the mean curvature and the Gauss
curvature).The mean curvature is an extrinsec invariant which measures the surface tension of the
surface arisen from the ambient space. The Riemannian geometry forms the theory of modern
differential geometry. Riemannian invariants are the intrinsic characteristic of the Riemannian
manifolds and they affect the behavior in general of the Riemannian manifolds. Curvature invariants
are the most natural and they play key roles in physics. The motion of a body in a gravitational field is
determined, according to Einstein, by the curvature of space time. All sorts of shapes from soap
bubbles to red cells, seems to be determined by various curvatures ([1],[2]). The differential geometry
of surfaces in Euclidian 3-space was generalized to the differential geometry of higher dimensional
submanifolds of Riemannian manifolds.

Preliminaries

For the submanifold M in N we denote by V and V the Levi-Civita connections of M and N
respectively. The Gauss and Weingarten formulas are given respectively by (see, for instance, [1])

(1.1) VxY=V,Y+h(X,Y)

(12) VxE=-A,X+Dy¢
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for vector fields X, Y tangent to M and & normal to M, where h denotes the second fundamental form,
D the normal connection, and A is the shape operator of the submanifold. It is well known that

(1.3) g(A;X.Y)=g(h(X,Y),&)

where E is the metric on N and g is the induced metric on M.
The tangent bundle of N, restricted to M is the direct sum of the tangent bundle T(M) of M and
the normal bundle T L(M):

(1.4) T(N),, =T(M)®T*(M).

Definition 1: A submanifold M is said to be torally geodesic if the second fundamental form h
vanishes identically (that is h=0).

Definition 2: For a normal section £ on M, if A;is everywhere proportional to the identity
transformation 1 (that is A = Al for some function A on M), then & is called an umbilical section and
M is said to be umbilical with respect to £. If the submanifold M is umbilical with respect to every
local normal section in M, then M is said to be fotally umbilical.

Let M be an n-dimensional submanifold of a Riemannian m-manifold N. We choose a local
field of orthonormal frame ey, . . . , €y, Ent1, - - ., Em in N such that, restricted to M, the vectors ey, . . .,
en are tangent to M and en., . . ., em are normal to M. Let A, = A, (a€ {n+l,...,m}).

Definition 3: The mean curvature vector H at P is a normal vector at P which is independent of
ortonormal basis,

m-=n

(1.5) H= lz (traceA )¢, = lih(ei,ei)
n nig

a

Definition 4: A submanifold M is called a pseudoumbilical submanifold if there exists a function A on
the submanifold M such that:

1.6) E(h(X,Y),H) =Ag(X.,Y)

for any vector fields X and Y on M.
Some relationships between invariants

Remark 1 ([1]): Every minimal submanifold is a pseudoumbilical submanifold, and for a

pseudoumbilical submanifold we have A = g(H JH).

Remark 2 ([1]): A totally umbilical submanifold is totally geodesic (i.e h=0) if and only if it is
minimal (i.e. H=0).

Remark 3 ([1]): For a unit normal vector & of M at point P, the second fundamental tensor with
respect to &, A, is self adjoint hence, there exist ortonormal vector ey, . . . , en, of M in P which are
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the eigenvectors of A, (thatis A, (e;) = h;e; for real numbers h; which are the principal curvatures and

€1, . . . , € which are principal direction of the normal direction &).
The curvature tensor of the Riemannian manifold N is:

1.7) K(X,Y)Z=VxViZ-ViVzZ-Vz7,Z

where X,Y,Z are the vector fields on the submanifold M. Let X, Y, Z, W be vector fields on the
submanifold M, then we have the equation of Gauss:

(1.8) K(X,Y:Z,W)=K(X,Y;Z,W)+g(h(X,Z),h(Y,W))— g(h(X ,W),h(Y,Z))

where K(X,Y;Z,W)=g(K(X,Y)Z,W) and K(X,Y;Z,W)=g(K(X,Y)Z,W).

If M is a hypersurface of N (i.e. M is of codimension 1 in N), then D,¢& =0. The curvature

tensor K of the hipersurface M is describe in term of A (shape operator) and the curvature tensor K of
the ambient space by the Gauss equation, which can be written as:

1.9) K(X.Y)Z=(K(X,1)Z)" + 8(AX,Z)AY - g(AY,Z)AX

for all tangent vector field X,Y,Z tangent on M, and “T” denotes projection on y(M). The Codazzi

equation of the hypersurface describes the normal component of E(X ,Y)Z in terms of the derivative
of the shape operator. It is given by:

(1.10) g(K(X,V)Z,&)=g((V,A)X —(V,A)Y,2)

where V, A, denotes the covariant derivative of A.

If the ambient space has constant sectional curvature, then E(X ,Y)Z is tangent to M for every X,Y,Z
tangent vector fields on M. Thus, (1.10) becomes

(1.11) (V,A)X =(V, ALY

As is well known, the shape operator A is a self-adjoint linear operator in each tangent plane 7,M
and its eigenvalues h,(P),h,(P)...,h,(P) are the principal curvatures of the hypersurface. Associated

to the shape operator there are n algebric invariants, named the
r-th mean curvature in P, given by:

(—lr)’ zhi,(P)hiz(P)'---'hf,,(P), 1<r<n.

n il<‘"<ir

(1.12) H,(P)=
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In particular, H, = —rtrace(A) =| H | is the mean curvature of M, which is the main extrinsic curvature
n

of the hypersurface.

On the other hand, when r = 2, H; defines a geometric quantity which is related to the intrinsic scalar
curvature of the hypersurface. Indeed, from [5], it follows from the Gauss equation that the Ricci
curvature of M is given by:

(1.13) Ric(X,Y)=Ric(X,Y)-g(K(X,OY,E)+n|H | g(A;X,Y) - g(A; X, A, )

for X,Ye y(M), where Ric stands for the Ricci curvature of the ambient space N. Therefore, the
scalar curvature p of the hypersurface M is:

(1.14) p =trace(Ric) = p —2Ric(&,E) +n(n—-1)H,

If the ambient space has constant sectional curvature c, then we have:

1.15) p=n(n-1)(c+H,).

Let S, (P)=(-1)"C] - H (P) denote the r-th elementary symmetric function on the eigenvalues of A in
P. Then, we have:

(1.16) det(r] — A) = i(—l)’S,t”_’

r=0

where S, = 1 by definition.
If PeM and {e,.} is a basis of T,M, formed by eigenvectors of A, with corresponding

i=ln

eigenvalues {4,} ., where 4, = ,(P), then it is immediate to check that

i=l,n

(1.17) S,* -2S, +trace(A*) =0.

If the ambient space N has constant sectional curvature “c” then, from the Gauss equation we have

(1.18) n(n—-1)(c—-p) =283,

where p is the scalar curvature of M.
Such function satisfy a very useful set of algebraic inequalities, usually reffered to as Newton’s
inequalities.

Theorema ([6]): Letn > 1 an integer and 4,,4,,...,4, be real numbers. Then, we have:
(1) For 1<r<n, one has H? 2H,  H
l<r<n with H

..1- Moreover, if equalities happens for r=1 or for some
#0,inthiscase,then 4, =4, =...= 4.

r+l
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QIf H=H,=..=H,_ >0, forsome 1<r<n, then H, 2\/H722{/FI:2...2Q/;IT. Moreover,
if equality happens for some 1< j<r,then 4, =4, =..=4,.

(3) If, for some 1<r<n, one has H, =H, , =0, then H; =0 for all r < j <n. In particular, at
most (r-1) of A, are different from zero.

For the proof, recall that if a polynomial f e R[X] has k>0 real roots, then its derivative f* has at
least k-1 real roots. In particular, if all roots of f are real, then the same is true for all roots of f’.
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