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Abstract

o Metal nanowires exhibit a number of interesting properties: their electrical conductance is quantized, their shot-
noise is suppressed by the Pauli principle, and they are remarkably strong and stable. We show that many of these

properlies. can be understood quantitatively using a nanoscale generalization of the free-electron model. Possible
technological applications of nanowires are also discussed.
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Résumé

) Les nano fils métalliques présentent un numéro de propriétés intéressantes : leur conductance électrique est
quantifiée, le bruit de fond est supprimé par le principe de Pauli est ils sont extrémement solides et stables. On va
démontrer comment beaucoup d’entre ces propriéiés peuvent étre comprises quantitativement en utilisant une

généralisation 2 échelle nano- du modele de I’électron libre. Des applications technologiques possibles des nano fils sont
aussi discutées.

Mots clef : nano fils, nano model, conductance électrique

Rezumat

Nanofirele mela_lice prezintd un numir de proprieta{i interesante: conductania lor electrici este cuantificats,
zgomotul de fond este suprimat de principiul lui Pauli si sunt remarcabil de puternice si stabile. Vom arita cum multe din

aceste 'proprieléti pot fi intelese cantitativ folosind o generalizare la scala nano- a modelului electronului liber. Posibile
aplicatii tehnologice ale nanofirelor sunt de asemenea discutate.

Cuvinte cheie: nanofire, nanomodel, conductanti electrici.

Introduction

Metal nanowires represent nature’s ultimate limit of conductors down to a single atom in
thickness. In the past eight years, experimental research on metal nanowires has burgeoned [1-13].
The simplest model of a metal is the free-electron model [14], which already describes many bulk
properties of simple monovalent metals semiquantitatively. In this article, we discuss our
generalization of the free-electron model to describe nanoscale conductors [15-22].

A remarkable feature of metal nanowires is the fact that they are stable at all. Figure 1 shows
electron micrographs by Kondo and Takayanagi [S] illustrating the formation of a gold nanowire.
Under electron beam irradiation, the wire becomes ever thinner, until it is but four atoms in diameter.
Almost all of the atoms are at the surface, with small coordination numbers. The surface energy of
such a structure is enormous, yet it is observed to form spontaneously, and to persist almost
indefinitely. Even wires one atom thick are found to be remarkably stable [8, 9, 13]. Naively, such
structures might be expected to break apart into clusters due to surface tension [23], but we find that
electron-shell effects can stabilize arbitrarily long nanowires [22].

In 1995, Rubio et al. [3] simultaneously measured the electrical conductance and cohesive
force of an atomic-scale gold wire as it is formed and ruptured (see Fig. 2, left panel). They observed
steps of order Go=2¢*/h in the conductance, which were synchronized with a sawtooth structure with
an amplitude of order 1 nN in the force.

Similar results were obtained independently by Stalder and Durig [4]. Note that the tensile
strength of the nanowire in the final stages before rupture exceeds that of macroscopic gold by a factor
of 20, and is of the same order of magnitude as the theoretical value in the absence of dislocations [3}
This is consistent with the recent finding of Rodrigues et al. [13] that such nanowires are, in fact
typically free of defects in their central region.
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Fig. 1. Transmission electron micrographs showing the formation of a gold nanowire
[5] (image courtesy of Y. Kondo): a) an image of Au(001) film with closely spaced nanoholes, the
initial stage of the nanowire, b) a nanowire four atoms in diameter, resulting from further
electron-beam irradiation

The standard description of nanoscale cohesion, pioneered by Landman et al. [24], is via
molecular dynamics simulations [24-26] which utilize short-ranged interatomic potentials suitable to
describe the bulk properties of metals. However, such an approach appears problematic when applied
to metal nanowires, in which electron-shell effects [11] due to the transverse confinement are likely to
be important. On the other hand, atomistic quantum calculations [27] using, e.g., the local-density
approximation, are restricted to such small systems that their results can not really be disentangled
from finite-size effects [20]. An alternative approach, developed by our group, is to replace the discrete
ionic coordinates by a coarse-grained jellium background, in order to be able to treat the electronic
degrees of freedom correctly. We have argued [15] that an atomic-scale contact between two pieces of
metal can be thought of as a waveguide for conduction electrons (which are responsible for both
electrical conduction and cohesion.

Each quantized mode transmitted through the contact contributes 2¢%/h to its conductance
and a force of order €x/Ag (roughly 1 nN) to its cohesion, where Ar is the de Broglie wavelength of an
electron at the Fermi energy ¢r (see Fig. 2, right panel).

The free-electron model of nanoscale conductors is introduced in the next section, followed
by a discussion of quantum transport, including the effect of realistic contacts to the nanowire.

Free-Electron Model

We investigate the simplest possible model [15, 16] for a metal nanowire: a free
(conduction) electron gas confined within the wire by Dirichlet boundary conditions. A nanowire is an
open quantum system, and so is treated most naturally in terms of the electronic scattering matrix S.

The Landauer formula [28] expressing the electrical conductance in terms of the submatrix
S12 describing transmission through the wire is

2 2
G=%jd df(E)Tr{,z( 15(6)) = ZZT,,(sF), )

where f(¢) is the Fermi-Dirac distribution function and the transmission probabilities T, are
the eigenvalues of S,2*S),.
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Fig. 2. Left: Measured electrical conductance and cohesive force of a gold nanowire
[3]. Right: Calculated conductance and force of a metal nanowire, modeled as a constriction in a
free-electron gas with hard walls [15].

The conductance of a metal nanocontact was calculated exactly in this model by Torres et al.
(29]. The appropriate thermodynamic potential to describe the energetics of such an open system is the
grand canonical potential £2

€r

[de g(exe-ep),

0

Q= —% [ds g(&)InQl +e"’“'”’)7;'° )

where f is the inverse temperature, y is the chemical potential of electrons injected into the
nanowire from the macroscopic electrodes, and g(e) is the electronic density of states (DOS) of the
nanowire. The DOS of an open system may be expressed in terms of the scattering matrix as [30]

1 oS
=—Tr{S"(e)—-hc.;. 3
g(&) o r{S (8)86 hc} 3)

This formula is also known as the Wigner delay. Thus, once the electronic scattering problem
for the nanowire is solved, both transport and energetic quantities can be readily calculated [15-17].
Electron—electron interactions can be included at the meanfield level in this model in a straightforward
way [16, 19, 21], but do not alter our main conclusions.

Quantum Transport
Evaluating the transmission probabilities T, in the WKB approximation for an axially-
symmetric nanowire [15], the conductance calculated from Eq. (1) is shown in the upper-right panel of

e ————————————— ]
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Fig. 2. Plateaus in the conductance at integer multiples of Gy are evident, with some rounding of the
steps due to tunneling. Some integers are absent, reflecting the degeneracies associated with axial
symmetry [2, 29].

Conductance steps of size GO were first observed in quantum point contacts (QPCs) fabricated
in semiconductor heterostructures [28] and are a rather universal phenomenon in metal nanowires [1-
4], even being found in contacts formed in liquid metals [6]. The precision of conductance
quantization in metal nanowires is poorer than that in semiconductor QPCs due to their inherently
rough structure on the scale of the Fermi wavelength IF, which causes backscattering [17], and due to
the imperfect hybridization of the atomic orbitals in the contact, especially for multivalent atoms [7].
For this reason, a statistical analysis of data for a large number of contacts is often made [1, 2, 6, 10,
11], resulting in a conductance histogram (see Fig. 3a).

To model quantum transport in gold nanowires, where there are no ‘‘missing integers” in the
conductance histogram [1, 6, 10], geometries without axial symmetry were chosen, and weak disorder,
corresponding to a mean-free path krf=270, was included both in the nanowire and in the electrodes
neighboring it [17]. The transmission probabilities were calculated by solving Schro” dinger’s equation
using a recursive Green’s function algorithm [17]. Averaging over different contact shapes and
impurity configurations, we obtained the histogram shown in Fig. 3a, which is very similar to typical
experimental histograms for gold [1, 6, 10]. The effect of disorder is twofold [17]: the conductance
peaks are shifted downward due to backscattering, and the peaks are broadened due to universal
conductance fluctuations, filtered by the nanowire.

Recently, additional information on quantum transport in metal nanowires has been obtained
from experiments on shot noise [10]. Shot noise is the term used to describe the temporal fluctuations
of electric current arising from the discreteness of the electric charge e. In 1918, Schottky showed that
if the arrival times of charge carriers are uncorrelated, the shot-noise spectral power P;=2el , where I is
the time-average current.

Counts (a.u.)

& 04
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Fig. 3. a) Calculated conductance histogram [17]; b) calculated mean shot noise hsli
(grey squares [18], together with experimental data from Ref. [10] (black circles); c¢) mean
transmission probabilities <7,> [18]. The error bars indicate the standard deviations of the
numerical results over the ensemble and the experimental errors, respectively
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However, in a quantum conductor with a finite number o7 ransmitted modes, the shot noise
is suppressed below the Schottky value due to anticorrelations induced >y Fermi- Dirac statistics. The
suppression factor at zero temperature is given by [10]

2 T,(a-T)

s, =1 =-» ___ 4

Figure 3b shows the measured shot noise (solid circles [10]) of gold nanowires as a
function of their conductance. The pronounced suppression of sl for wires with conductances near
integer multiples of GO reveals unambiguously the quantized nature of the electronic transport. We
computed [18] the mean and standard deviation of s; and T,, as functions of G (grey squares in Fig. 3)
from the numerical data used to generate the conductance histogram in Fig. 3a. The agreement of the
experimental results for particular contacts and the calculated distribution of sI shown in Fig. 3b is
extremely good: 67% of the experimental points lie within one standard deviation of hsl i and 89% lie
within two standard deviations. It should be emphasized that no attempt has been made to fit the shot-
noise data; the numerical data of Ref. [17], where the length of the contact and the strength of the
disorder were chosen to model experimental conductance histograms for gold, have simply been
reanalyzed to calculate <s;>. The 97% suppression of shot noise for nanowires with a single quantum
of conductance (i.e., wires one atom thick) suggests that such wires could be useful for low-
temperature/low-noise applications, such as quantum computing.

Metallic Nanocohesion

The cohesive force of the nanowire is F=-3§/0L, where L is the length of the nanowire. We
assume that the volume per atom is conserved under elongation (ideal plastic deformation), so that the
deformation occurs at constant volume (for alternative constraints, see Refs. [19, 21]. While the
conductance is determined by the transmission probabilities, Eqs. (2) and (3) indicate that the
energetics of a nanowire are determined by the scattering phase shifts. Evaluating the phase shifts in
the WKB approximation, performing the energy integral in Eq. (2) at 7=0, and taking the derivative
with respect to elongation [15], one finds the force shown in the lower right panel of Fig. 2. The
correlations between the force and conductance are striking: as the wire is elongated and its diameter
decreases, |F| increases along a conductance plateau, but decreases sharply when the conductance
drops. Each transmitted mode acts like a delocalized metallic bond, which can be stretched and broken.

The calculated force is remarkably similar, both quantitatively and qualitatively, to the
measured force for gold nanowires, shown in the lower-left panel of Fig. 2. Inserting the value er=1r<
1,7 nN for gold, we see that both the overall scale of the force for a given value of the conductance and
the heights of the last two force oscillations are in quantitative agreement with the experimental data.
One discrepancy is that the jumps in both force and conductance are less abrupt than in the
experimental curves, possibly because we considered only geometries that change continuously with
elongation.

In order to separate out the mesoscopic sawtooth structure in the force, associated with the
opening of individual conductance channels, from the overall (macroscopic) trend of the contact to
become stronger as its diameter increases, it is useful to perform a systematic semiclassical expansion
[31, 32] of the DOS, g(€)=g(€)+ &(€), where g is a smooth average term, referred to as the Weyl

contribution, and dg(&) is an oscillatory term, whose average is zero. For the free electron model with
Dirichlet boundary conditions, the Weyl term is [32]

=g ﬂ_kz_A+£ 5)
& 27t 87 6rt)
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where k = v/2me /m, V is the volume of the wire, A its surface area, and C the integrated
mean curvature of its surface. The oscillatory contribution dg(e) to the DOS may be approximated as a
Feynman sum over classical periodic orbits a" la Gutzwiller [31, 32]

dg(e) = ZAV cos(%ﬂﬂ,). 6)

where S, is the classical action of a periodic orbit, 8, is a phase shift determined by the
singular points along the classical trajectory, and A, is an amplitude depending on the stability,
symmetry, and period of the orbit. Using _z(¢) in Eq. (2), one can derive a Sharvin-like formula for
the force

= = 7w.D 4
F=F+&F, F=-2e|ZeZ_2) 7
AF( 16 9) o

The first term in F is the surface tension. The oscillatory mesoscopic correction 6F may be
calculated with the aid of Eq. (6). Under reasonable assumptions about the geometry, it can be shown
[19] that the amplitude of the force oscillations is universal rms(0F)=0,58621¢c/AF.

In more realistic models including electron—electron interactions [16, 19, 21] and
selfconsistent confining potentials [33], the surface tension is typically reduced compared to Eq. (7),
but the force oscillations are essentially the same as in the free-electron model.
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